sdmay19-12: Automatic Solder Dispenser

Status Report 16

March 3 - March 17

Client: Leland Harker

Team Members

Jason Austin - Software Lead

Justin Wheeler - Mechanical Lead

Zachary Bumstead - Electrical Lead

Kevin Carlson – Mechanical/Electrical Integrator

Trenton Allison – Software/Electrical Integrator

Samuel Willford - Report Manager and Meeting Facilitator

Summary of Progress this Report

- Used Inventor to model the screen hole in the lid & mounting brackets Kevin
 - o The model will be cut on the mill, testing it with a scrap piece
 - Mounting brackets will hold the screen in place
- Used Inventor to model output tube Sam
 - The output tube will be cut on the mill
 - Simple design, will be cut to appropriate length later
- Troubleshooted photoresistor/LED PCB Trent
 - A second board was soldered to determine if the same issues would arise
 - With the second board, 2 of the 4 photoresistor/LED pairs worked
 - We concluded that we should move on from this design
- Soldered driver board Revision 3 Trent
 - PCB arrived and was soldered
 - Mild troubleshooting was involved
 - Had to resolder 2 driver chips
- Extended stepper motor wires & added connectors Sam, Trent
 - One stepper motor had a different connector than the other
 - Connector was replaced
 - Wires were extended, connectors were added to two steppers
 - Same color schematic for each
- Design housing/cover for opto-isolators Justin
 - This will be milled and will ensure that the environment does not affect the opto-isolator performance
 - Design was finished, PCB needs to be created according to the design

- Designed and tested a schematic using opto-isolators Trent, Zach, Sam
 - Worked more accurately than photoresistor and LED sensor board
 - Could detect both sizes of solder through the tube.
 - A perf board with the opto-isolator design was soldered
- Designed opto-isolator PCB Zach
 - Worked with Justin to ensure holes were in the right spot
 - Based off schematic that was tested
- Safe shutdown implementation Jason
 - o Pi safely shuts down when it loses power, sending an email to ETG first
 - Push button needs to be installed to turn PI back on after power is reconnected
- Installed extruders on other 3 stepper motors and mounted motors in box Justin
- Finished mounting spool brackets in box Justin
 - Spool brackets had already been created and needed to be mounted in box

Pending Issues

None at this time

Plans for Upcoming Reporting Period

- Connect extruders to coiler and cutter via tube
 - Test to ensure solder can travel smoothly
 - o Ensure coiler does not cause jamming
- Finish software
 - Add database resetting option in administrative page
 - Resize buttons, add color if possible
- Add reset pushbutton to box
 - This button will reset the pi if power returns quickly
 - Only needed when power returns before the capacitors drain
- Test open-box sensor and functionality
 - Need to ensure the software is present for this
- Get acrylic piece bent for 45 degree slant
 - The box will need to be at 45 degrees in order for solder to slide through the output tube
- Solder and test opto-isolator PCB
 - Ensure code for priming and retracting works also

Individual Contributions

Team Member	Contribution	Weekly Hours	Total Hours
Sam Willford	Report 16, worked with Zach on opto-isolator design, extended stepper motor wires, created output tube drawings	18	166
Jason Austin	Safe shutdown implementation, debugging sensor board	11	172
Trent Allison	Soldered a second sensor board, troubleshooted sensor boards, solder new driver board	22	160.5
Justin Wheeler	Designed opto-isolator housing and worked with Kevin on lid placement	14	142.5
Kevin Carlson	Designed hole in lid for pi screen, along with brackets	17	106
Zach Bumstead	Tested opto-isolators, created opto-isolator PCB	21	130