

Automatic Solder Dispenser

Members and Client

Sam Willford - Team Manager, Report Manager

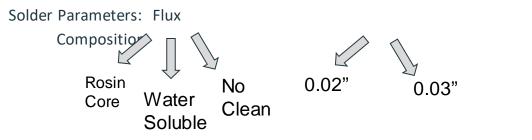
Weekly reports, Project Plan, Design Document, Leading Team Meetings Jason Austin - Software Lead

Software design, Repository management Justin Wheeler - Mechanical Lead

Mechanical Design, Mechanical Fabrication

Zach Bumstead - Electrical Lead

Web Page Design, Driver Board Design


Trent Allison - Electrical and Software Integrator

Driver Board Design, Soldered Driver board, Connected Components Kevin Carlson - Electrical and Mechanical Integrator

Mechanical Descriptions, Design Document, Assist Extruder Design Client: Lee Harker (From ETG)

Problem Statement

- ETG receives many requests for solder daily
 - o Can't leave spools out in public -> they disappear
- Students don't know which solder type they need
 - Takes time for ETG members to educate these students
- Goal is to save ETG time and money by automating this process

Requirements

- Reduce Solder Waste
- Mobility
- Interactive Display
- Communicate with ETG via email
- Special access for administrators
- Clear top enclosure

Market Survey

- Automatic solder dispenser gun has been created
- But automatic solder dispensing machine has not yet been created
- Comparable device: automatic paper towel dispenser

Potential Risks and Mitigation

- Risks:
 - o Solderjam
 - Students reaching in box for more solder
 - Injury due to cutter

- Mitigation:
 - o Jam senor
 - Placed solder/cutter to be unreachable

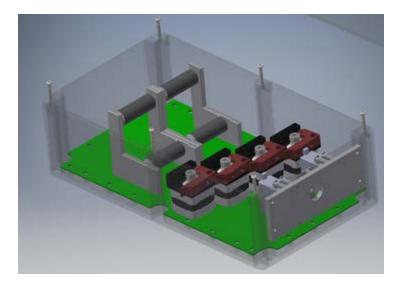
Resource and Cost Estimation

- Box: \$115
- Display screen: \$65
- Raspberry PI: \$40
- PCB: \$10
- Servo/Stepper motors: \$45
- Extruder: \$10
- Car reader: \$15
- Other: \$65
- Total: ~\$365

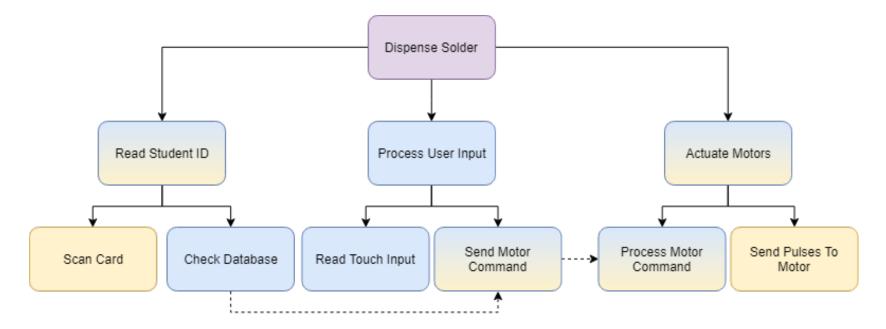
Budget discussed at beginning of year: \$400

Project Milestones and Schedule

Milestone 1 - Decide microcontroller, box, and motors - 9/18/2018

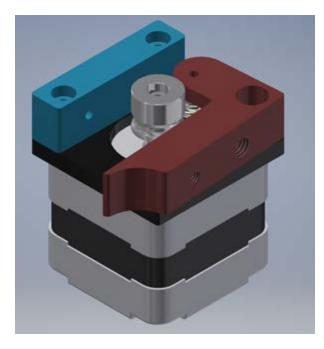

Milestone 2 - Design and create PCB - 11/23/2018

Milestone 3 - Complete mechanical design and creation - 12/21/2018


Milestone 4 - Complete programming code - 2/8/2019

Milestone 5 - Integrate all parts inside box and begin testing - 3/22/2019

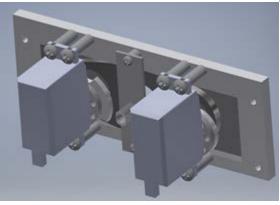
System Design


Functional Decomposition

Detailed Design - Mechanical

Extruder

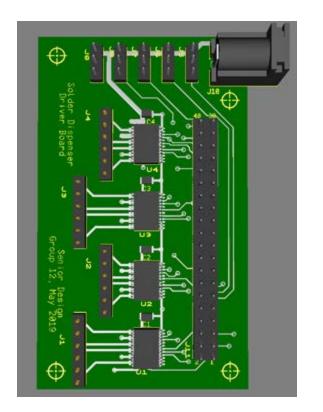
- Provides tension to the solder while feeding it through the system
- Must be able to be reproduced with available tooling/services at ISU without excessive cost
- Material/Machining Options
 - Aluminum Waterjet Cut and Finished by ETG
 - O Aluminum Boyd Labs
 - 0 3D Printed Black Engineering
 - o 3D Printed Design


Detailed Design - Mechanical

Spool Mounting

- Gives the spools of solder a place to mount
- Must be extremely serviceable, the point that ETG techs will be touching the most

Cutter


- Must cleanly cut the solder after it has been dispensed
- Must be very repeatable
- For safety reasons it must be shielded from the user so they can't hurt themselves.

Detailed Design - Electrical

- Stepper Motor Driver Board
 - Makes the system reproducible
 - Ease of building
 - Neat / compact
 - o Common connector for motors
 - 3 pin headers for servos and sensors
- Power Supply
 - o 5V, 2 Amp "wall wart" power supply

Detailed Design - Software

GUI

- Gives the user selectable options
 - Spool selection
 - Desired length
- Must be simple to understand
- Must be usable with a touchscreen interface
- Must provide user with necessary information about currently selected spool

Detailed Design - Software

Access control

- Must allow or deny access to users based on time of last access
- Must send periodic status reports to the ETG
- Must survive power failures

Motor control

- Must drive selectable stepper motor
- Must drive cutter servos
- Must release control of all motors when not in use

Detailed Design - Software

Hardware monitoring

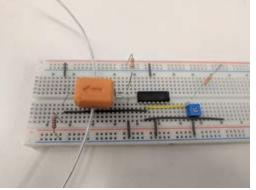
- Prior to mechanical action, software must collect data on device status
 - Possible jams
 - o Coveropen
- Must report error states to ETG
- Must deny user access to possible jammed spools
- Must deny any motor movement until "Cover Open" status is cleared by admin

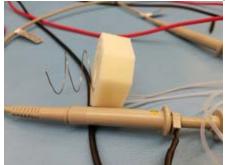
HW/SW/Technology Platform(s) used

- Raspberry Pi 3+
- Python
- 7" Touchscreen display
- Custom PCB

Test Plan

- Goal is to finish dispenser early and allow students to use machine
 - Spring Break deadline goal
 - Dispenser will be placed in public for testing
 - Inside TLA in Coover

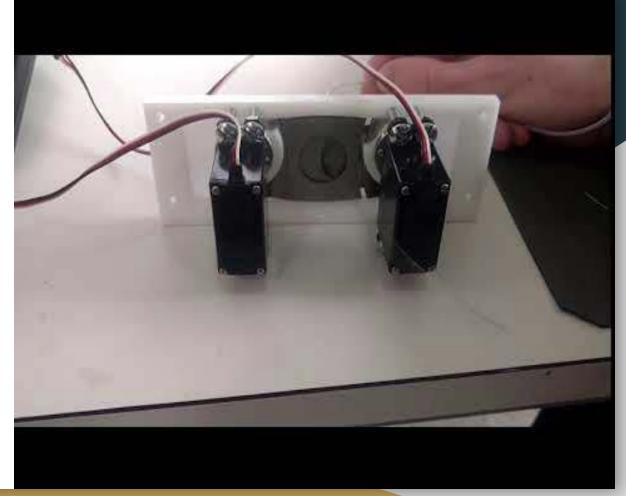

- We will have time to fix unexpected issues
 - Collect data on jam rates
 - Receive feedback from students on how to improve

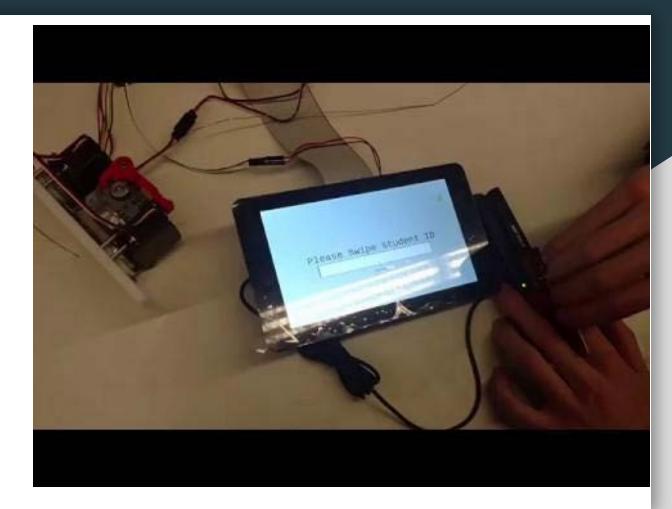

Current Project Status

- Solder cutting device and code has been tested
- Plastic extruder and code has been tested
 - Motor control functions have been created
- Parts for aluminum extruder have been cut
 - Needs to be fitted and assembled
- Database is set up
 - Card reader works and can read/write to database
 - Checks for 20 minute waiting time
- First PCB has been created and tested

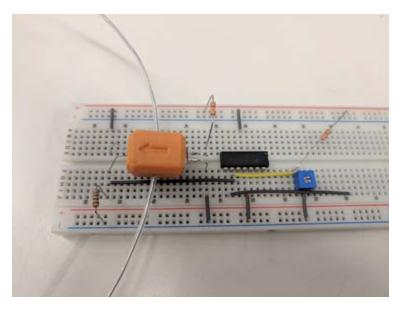
Approximately on Schedule!

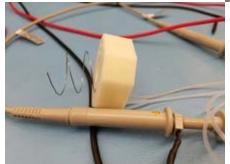
- Jam-Detection using optical switches
- Coiling solder to make the system more compact
- Sensor to detect when the box has been opened



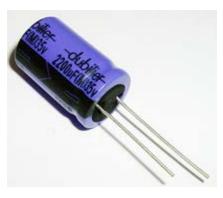

Demo

Thank You


Cutter Video


Extruder & Program

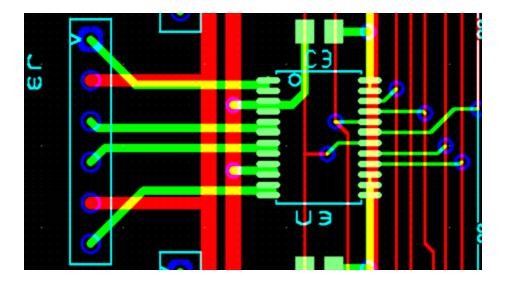
- Jam-Detection using optical switches
 - Programmatic evaluation of a "good" cycle
 - Possible second board design for amplification or simple evaluation for the purpose of abstracting this decision away from the Pi

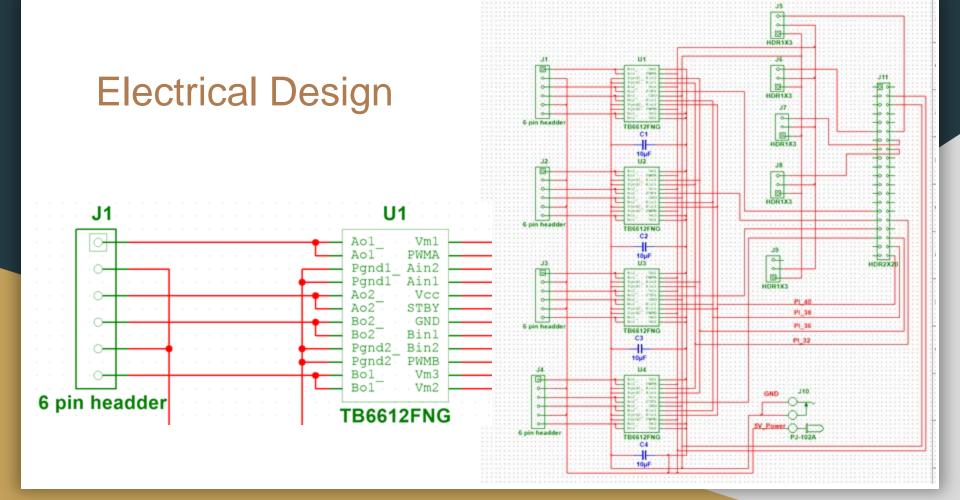

- Coiling Accumulator
 - Removes need for length of tubing at the base of device
 - Demonstrates practical application of additive manufacturing techniques pursuant to goal of acting as a teaching aid
 - Will require significant modification of enclosure

- Box-Open Sensor
 - Simple micro switch sensor to send email notification to administrators when the box has been opened
 - Possibly using charged capacitor to allow this function for a short time after power loss

Security Concerns & Solutions

Concern	Solution
Access to all student ID numbers	Periodically purge IDs with time > 20'
Access to database information	Purge user and admin db if cover is opened outside of maintenance

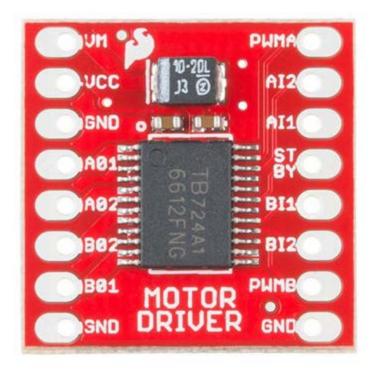

Administration Access


- Normal user access, minus cool down constraint
- Access to configure spool configurations
 - Length of spool
 - o Diameter
 - o Flux type
 - o Composition
- Maintenance options
 - o Clear user Database
 - o Clear Admin Database
 - Approved open cover access
 - Clear open cover status
- View spool status

Power Use

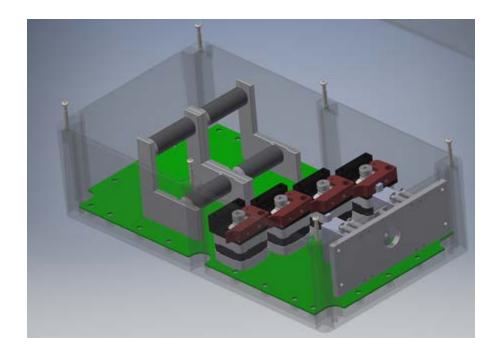
Component	Active Draw	Passive Draw
Raspberry Pi	550 mA	550 mA
Screen	500 mA	40 mA
Stepper Motor	14 mA	0
Servo Motor	800 mA	20 mA
Drivers	1 mA	0
TOTAL	1950 mA	610 mA

Electrical Design



Electrical Design

• TB6612FNG


- o Dual channel DC motor driver
- o Standby

Spool Bracket

